Laboratory note

Antimicrobial activities of new analogues of benzalkonium chloride

J. Pernak^a*, I. Mirska^b, R. Kmiecik^a

^aPoznan University of Technology, Sklodowskiej-Curie 2, 60-965 Poznan, Poland ^bK. Marcinkowski University of Medical Sciences, Sieroca 10, 61-771 Poznan, Poland (Received 29 December 1998; revised 15 March 1999; accepted 18 March 1999)

Abstract – (Alkoxymethyl)dimethyl{2-hydroxy-5-[(4-X-phenyl)azo]benzyl}ammonium chlorides were prepared in high yield. All these chlorides, new analogues of benzalkonium chloride, showed antimicrobial activity. Activity depends on the length and kind of substituent at the quaternary nitrogen atom. © 1999 Éditions scientifiques et médicales Elsevier SAS

analogue of benzalkonium chloride / 4-hydroxyazobenzenes / Mannich bases / chloromethylalkyl ether / antimicrobial activity

1. Introduction

Benzalkonium chloride (BAC) is the product of a nucleophilic substitution reaction of alkyldimethylamine with benzyl chloride [1]. Chemically, it is monoalkyldimethylammonium chloride with one long-chain alkyl group representing a mixture of the alkyls from C₈H₁₇ to C₁₈H₃₇. Following Domagk's publication in 1935 [2], a large number of application areas were developed for BAC. It is used as a pharmaceutical aid (preservative), cationic surface active agent, germicide, antiseptic (topical), antiseptic for skin preoperatively or for wounds, burns, etc. BAC is often present as a preservative or stabilising agent in nebulizer solutions used to treat asthma and chronic obstructive pulmonary disease [3]. Also it is widely used as an antimicrobial agent in the treatment of common infections of the mouth and throat.

We now report the synthesis and antimicrobial activities of new quaternary ammonium compounds, the analogues of benzalkonium chloride. We plan to find compounds with antimicrobial activity which are diluted in water giving a coloured solution. Commercial products with these compounds will not have to contain any dye.

2. Chemistry

Mannich reaction (or aminomethylation) of variously substituted phenols is a well known process and comprehensive reviews have been published [4–7]. A few Mannich bases of phenolic azobenzenes have demonstrated cytotoxicity towards murine and human cancers [8]. Mannich bases methiodides have a promising cytotoxic activity in a wide variety of tumours [9].

The new analogues of benzalkonium chloride (3–10) were prepared by the reaction of 2-[(dimethylamino)-methyl]-4-[(4-chlorophenyl)azo]phenol (2a) or 2-[(dimethylamino)methyl]-4-[(4-methylphenyl)azo]phenol (2b) with chloromethylalkyl or chloromethylcycloalkyl ethers giving yields between 80–98%. In this case, Mannich base is a compound which is easily transformed into a quaternary ammonium salt.

Chloromethylalkyl and chloromethylcycloalkyl ethers were synthesised from the corresponding alcohols. Mannich bases (2a–b) were prepared by treatment of the 4-hydroxyazobenzenes with equimolar quantities of formaldehyde and dimethylamine in 75% yield.

The 4-hydroxyazobenzenes (azo dyes) were prepared by several authors in the 19th century [10]. At the present time, only one compound, 4-hydroxyazobenzene (Solvent Yellow 7), is commercially available.

^{*}Correspondence and reprints

$$\begin{array}{c} OH \\ CH_2 \\ N \end{array} \begin{array}{c} CH_3 \\ CH_3 \end{array} \begin{array}{c} OH \\ CH_2 \\ N^* \end{array} \begin{array}{c} CH_3 \\ CH_2 \\ N^* \end{array} \begin{array}{c} CH_3 \\ CH_2 \\ N^* \end{array} \begin{array}{c} CH_2 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_2 \\ CH_3 \end{array} \begin{array}{c} CH_2 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} CH_3 \\ CH_3$$

3. Antimicrobial activity

All synthesised quaternary ammonium chlorides (3–10) were tested for antimicrobial activity against cocci, rods and fungi.

4. Results and discussion

4-Hydroxyazobenzenes react readily with formaldehyde and secondary amines to give Mannich bases. The structures of two prepared mono Mannich bases (2a–b) were characterized by their microanalysis CHN and by their ¹H and ¹³C NMR spectroscopy.

Quaternization of **2a** and **2b** with chloromethylalkyl or chloromethylcycloalkyl ethers produced red crystalline quaternary ammonium chlorides **3–10** (*table I*) diluted in water. The water solution of these chlorides is stable and orange in colour. ¹H and ¹³C NMR-spectral analysis of prepared chlorides allowed easy elucidation of their structure.

The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) values determined for all forty chlorides are given in *tables II* and *III*. The chlorides studied were divided into four groups with respect to the kind of substituent: group 1, chlorides with an alkoxymethyl substituent with an even number of carbon atoms (3 and 7); group 2, chlorides with the same substituent but with an odd number of carbon atoms (4 and 8); group 3, chlorides with a cycloalkoxymethyl

substituent (5 and 8); and group 4, chlorides with $CH_2O(CH_2)_nC_6H_{11}$ substituent (6 and 10). The calculated average MIC values for cocci, rods and fungi are shown in figures 1 and 2. As shown by the results in these tables and figures, all the chlorides studied are very active against cocci and active against rods and fungi. The microbial activity depends on the length and kind of substituent at the quaternary nitrogen atom. Figures 1 and 2 reveal a decrease in the MIC value to the optimum value and these values increase for chlorides from groups 1, 2 and 3. The same correlation is observed for the MBC values. Generally the MBC values are slightly higher than MIC values. To the most active compounds in group 1 belong chlorides which have butoxymethyl, hexyloxymethyl and octyloxymethyl substituent, in group 2 chloride with heptyloxymethyl chain, and in group 3 chlorides which have cyclopentyloxymethyl, cyclohexyloxymethyl and cycloheptyloxymethyl substituent. To the worst compounds belong chlorides with dodecyloxymethyl and cyclododecyloxymethyl chain. Chlorides from group 4 have comparable values of MIC. In this group the microbial activity does not depend on the substituent – $CH_2O(CH_2)_nC_6H_{11}$ where n = 1 or 2.

The most active chlorides against microorganisms were: {5-[(4-chlorophenyl)azo]-2-hydroxybenzyl}dimethyl-(cyclohexyloxymethyl)ammonium (**5b**), {5-[(4-chlorophenyl)azo]-2-hydroxybenzyl}dimethyl(cyclohexyl-methyloxymethyl)ammonium (**6a**), {2-hydroxy-5-[(4-methylphenyl)azo]benzyl}dimethyl(hexyloxymethyl)-

Chloride	\mathbb{R}^1	\mathbb{R}^2	Yield (%)	Chloride	\mathbb{R}^1	\mathbb{R}^2	Yield (%)
3a	Cl	C_2H_5	80	7a	CH ₃	C_2H_5	80
3b	Cl	C ₄ H ₉ ^a	96	7b	CH_3	$C_4H_9^a$	86
3c	Cl	$C_6H_{13}^a$	98	7c	CH_3	$C_6H_{13}^a$	90
3d	Cl	$C_8H_{17}^{a}$	90	7d	CH_3	C_8^{13} a	80
3e	Cl	$C_{10}H_{21}^{a}$	85	7e	CH_3	$C_{10}H_{21}^{a}$	80
3f	Cl	$C_{12}H_{25}^{a}$	86	7 f	CH_3	$C_{12}^{10}H_{25}^{10}$	96
4a	Cl	$C_3H_7^a$	90	8a	CH_3	$C_3H_7^a$	80
4b	Cl	C ₅ H ₁₁ ^a	80	8b	CH_3	$C_5H_{11}^a$	87
4c	Cl	$C_7 H_{15}^{a}$	80	8c	CH_3	$C_7H_{15}^{a}$	80
4d	Cl	$C_9H_{19}^{a}$	90	8d	CH_3	$C_9H_{19}^{a}$	80
4e	Cl	$C_{11}H_{23}^{a}$	96	8e	CH_3	$C_{11}H_{23}^{a}$	90
5a	Cl	$C_5H_9^{\overline{b}}$	80	9a	CH_3	$C_5H_9^{\overline{b}}$	88
5b	Cl	$C_6H_{11}^{b}$	80	9b	CH_3	$C_6H_{11}^{\ b}$	84
5c	Cl	$C_7H_{13}^{b}$	90	9c	CH_3	C_7^{113}	92
5d	Cl	$C_8H_{15}^{15}$	80	9d	CH_3	$C_8H_{15}^{b}$	80
5e	Cl	$C_{12}H_{23}^{\ b}$	80	9e	CH_3	$C_{12}H_{23}^{\ \ b}$	86
5f	Cl	$C_6H_{10}CH_3^b$	80	9 f	CH_3	$C_6H_{10}CH_3^b$	84
6a	Cl	$CH_2C_6H_{11}^{b}$	90	10a	CH_3	$CH_2C_6H_{11}^b$	80
6b	Cl	$CH_2CH_2C_6H_{11}^b$	86	10b	CH_3	CH ₂ CH ₂ C ₆ H ₁₁ ^b	80
6c	Cl	CH ₂ CH ₂ CH ₂ C ₆ H ₁₁ ^b	85	10c	CH_3	$CH_2CH_2CH_2C_6H_{11}^b$	80

Table I. (Alkoxymethyl)dimethyl{5-[(4-chlorophenyl)azo]-2-hydroxybenzyl}ammonium chlorides (3-6) and (alkoxymethyl)dimethyl{2hvdroxy-5-[(4-methylphenyl)azolbenzyl)ammonium (7–10) chlorides

ammonium (7c), {2-hydroxy-5-[(4-methylphenyl)azo]benzyl}dimethyl(cyclopentyloxymethyl)ammonium (9a).

The results presented demonstrate that the new BAC analogues are very active against cocci. Their activities are similar to the activity of BAC. The antimicrobial activities of BAC (Aldrich product, in which R represents a mixture of alkyls from C₈H₁₇ to C₁₈H₃₇) against cocci, Micrococcus luteus, Staphylococcus epidermidis and Staphylococcus aureus as measured in the same MIC test are 1.5, 3.0 and 1.5 mmol/L, respectively. Tomlinson and coworkers [11] reported the antibacterial activities of homologues series (C₈-C₁₈) of alkylbenzyldimethylammonium chlorides against Pseudomonas aeruginosa. BAC resistance is a potential problem for application, for example in the food processing industry [12]. We found compounds with large molecular weights, crystalline, diluted in water and the orange water solution is stable.

5. Experimental protocols

5.1. Chemistry

NMR spectra were recorded on a Varian Model XL 300 spectrometer at 300 MHz for ¹H and 75 MHz for ¹³C at 20 °C with tetramethylsilane as internal reference. Satisfactory elemental analyses were obtained: $C \pm 0.32$, $H \pm 0.29$ and $N \pm 0.24$.

Chloromethylalkyl ethers and chloromethylcycloalkyl ethers were prepared via the procedures which were reported earlier [13]. The percentage of ether in a crude product was determined by an alkalimetric method [14].

2-[(Dimethylamino)methyl]-4-(phenylazo)phenols (2a-b); general procedure:

Pathway A. To a solution of dimethylamine (30 mmol) in 95% EtOH (10 mL) paraformaldehyde powder (0.9 g, 30 mmol) was added. The mixture was stirred and heated when the paraformaldehyde had dissolved, then the corresponding 4-hydroxyazobenzene (30 mmol) 100 mL EtOH was added. The reaction mixture was stirred for 1 h at 60 °C.

Pathway B. To 2-[(dimethylamino)methyl]phenol (20 mmol) in 50 mL MeOH was added diazonium salt prepared from dimethylamine (20 mmol). The mixture was stirred at room temperature for 2 h. The solid substrate was filtered and then recrystallized from EtOH.

2-[(Dimethylamino)methyl]-4-[(4-chlorophenyl)azo]phenol (2a): m.p. 120-122 °C, ¹H NMR (CDCl₃) δ ppm = 11.6 (s, OH), 7.83 (dd, J = 6 Hz, 1H), 7.82 (d, J = 9 Hz, 2H), 7.61 (d, J = 2 Hz, 1H), 7.45 (d, J = 8 Hz, 2H), 6.95 (d, J = 8 Hz, 1H), 3.72 (s, 2H), 2.36 (s, 6H); ¹³C NMR δ ppm = 161.8, 151.0, 145.5, 135.7, 129.1, 125.2, 123.6, 122.6, 122.1, 116.6, 62.6, 44.4.

2-[(Dimethylamino)methyl]-4-[(4-methylphenyl)azo]phenol (**2b**): m.p. 99–100 °C, lit. 103 °C [10].

^a linear alkyl, ^b alicyclic.

Table II. The MIC^a and MBC^a values of examined chlorides (3-6).

Strains ^b											Chle	orides									
		3a	3b	3c	3d	3e	3f	4a	4 b	4c	4d	4e	5a	5b	5c	5d	5e	5f	6a	6b	6c
Cocci																					
M. luteus	MIC MBC	21 21	10 10	18 18	17 34	32 32	59 118	78 78	37 37	9 18	33 518	61 61	19 19	36 71	18 18	34 34	479 479	9 9	9 9	8	16 16
S. epidermidis	MIC MBC	21 21	10 18	9 18	8 17	8 16	30 30	156 156	73 146	9 18	16 128	31 31	19 19	18 18	9 9	8 17	8 118	9 9	18 18	8 8	16 64
S. aureus	MIC MBC	260 260	38 76	217 217	267 534	252 252	238 477	156 1256	146 219	9 36	128 518	245 490	9 19	9 18	9 9	214 214	8	18 36	18 36	8 8	16 129
Rods																					
P. aeuruginosa	MIC MBC	260 520	304 304	284 568	267 534	504 504	1908 1908	2512 2515	1750 4695		518 2074	980 980	73 146	71 142	553 553	429 429	1915 1915	137 256	137 553	133 268	520 520
P. vulgaris	MIC MBC	81 161	76 152	18 36	132 267	252 504	477 954	628 2512	219 438	9 36	259 518	245 490	19 73	18 71	9 137	268 536	16 1915	9 68	18 137	8 66	16 129
K. pneumoniae	MIC MBC	260 520	304 304	141 284	132 267	504 504	954 954	1256 2512	875 1750	9 36	64 1037	490 980	38 146	36 71	36 36	133 133	239 958	36 68	36 36	66 133	64 129
E. coli	MIC MBC	81 326	38 76	141 141	132 267	125 252	477 954	628 628	438 875	136 275	259 1037	490 980	38 73	71 142	18 18	66 133	958 1915	36 36	18 36	34 66	32 64
S. marescens	MIC MBC	1302 1302	608 1216	568 568	534 534	1008 4032	3816 3816		1750 4695		1037 2074	1960 1960		142 285	256 553	1073 2146	3831 3831		68 137	133 268	1041 1041
Fungi																					
C. albicans	MIC MBC	325 651	304 608	70 141	267 534	504 1008		1256 2512	875 1750	136 1101	259 4149	490 980	146 146	71 142	68 256	268 536	3831 3831	256 1106	68 137	34 66	129 260
T. mentagrophytes	MIC MBC	161 161	76 152	18 18	66 132	125 252	477 477	1256 1256		36 36	64 2074	122 245	73 73	36 36	36 36	268 286	1915 1915		68 68	34 34	64 129
Rh. rubra	MIC MBC	161 161	152 304	36 70	132 267	252 504	3816 3816	628 1256	219 219	36 68	259 2074	490 490	38 73	36 71	36 36	268 268	1915 3831		36 68	17 34	64 64

^a in mmol/L, ^b the number of microorganisms in mL ranged from 10⁴–10⁵.

The quaternary ammonium chlorides 3–10 were prepared by dissolving 2-[(dimethylamino)methyl]-4-(X-phenylazo)phenol in $\mathrm{CH_2Cl_2}$ and adding an equimolar amount of the appropriate chloromethylalkyl or chloromethylcycloalkyl ether. The mixture was stirred at room temperature for 24 h. The solvent was evaporated and the crude product was extracted three times with hexane. Finally, the products were crystallized from $\mathrm{CH_3COOC_2H_5/MeOH}$ and dried in vacuum oven.

 $\{5-[(4-\text{chlorophenyl})azo]-2-\text{hydroxybenzyl}\}$ dimethyl-(dodecyloxymethyl)ammonium chloride (3 \mathbf{f}): m.p. 124–126 °C, ¹H NMR (DMSO- d_6) δ ppm = 11.9 (s, OH), 8.06 (d, J=2 Hz, 1H), 7.96 (dd, J=7 Hz, 1H), 7.86 (d, J=9 Hz, 2H), 7.66 (d, J=9 Hz, 2H), 7.46 (d, J=9 Hz, 1H), 4.82 (s, 2H, CH₂N), 4.58 (s, 2H, NCH₂O), 3.86 (t, J=7 Hz, 2H), 3.02 (s, 6H), 2.00 (m, 2H), 1.63 (m, 18H), 0.86 (t, J=7 Hz, 3H); ¹³C NMR δ ppm = 161.4, 150.5, 144.6, 135.2, 130.5, 129.5, 125.9, 123.8, 117.1, 114.9, 90.0, 73.0 (NCH₂O), 57.9 (CH₂N), 46.3 [N(CH₃)₂], 33.7, 31.3, 29.2, 29.0, 28.8, 28.7, 25.3, 22.1, 13.9.

 $\{5-[(4-\text{chlorophenyl})azo]-2-\text{hydroxybenzyl}\}$ dimethyl-(cyclohexyloxymethyl)ammonium chloride (**5b**): m.p. 120–123 °C, ¹H NMR (DMSO- d_6) δ ppm = 11.5 (s, OH), 8.07 (d, J=2 Hz, 1H), 7.96 (dd, J=7 Hz, 1H), 7.85 (d, J=9 Hz, 2H), 7.58 (d, J=9 Hz, 2H), 7.38 (d, J=9 Hz, 1H), 4.86 (s, 2H, CH₂N), 4.60 (s, 2H, NCH₂O), 3.84 (m, 1H), 3.05 (s, 6H), 1.92 (m, 2H), 1.74 (m, 2H), 1.49 (m, 6H); 13 C NMR δ ppm = 159.3, 148.7, 143.0, 133.6, 128.3, 127.4, 124.4, 121.8, 115.2, 113.2, 82.5, 78.0 (NCH₂O), 56.1 (CH₂N), 44.4 [N(CH₃)₂], 33.4, 27.7, 21.9.

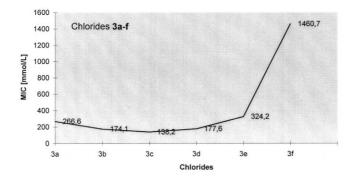
(Cycloheptyloxymethyl)dimethyl{2-hydroxy-5-[(4-methylphenyl)azo]benzyl}ammonium chloride (**9c**): m.p. 152–154 °C, ¹H NMR (DMSO- d_6 /CDCl₃) δ ppm = 11.3 (OH), 8.03 (d, J = 2 Hz, 1H), 7.92 (dd, J = 6 Hz, 1H), 7.76 (d, J = 9 Hz, 2H), 7.34 (d, J = 9 Hz, 3H), 4.82 (s, 2H, CH₂N), 4.59 (s, 2H, NCH₂O), 4.02 (m, 1H), 3.05 (s, 6H), 2.42 (s, 3H), 1.99 (m, 2H), 1.81 (m, 4H), 1.58 (m, 4H), 1.54 (m, 2H); 13 C NMR δ ppm = 158.7, 148.4,

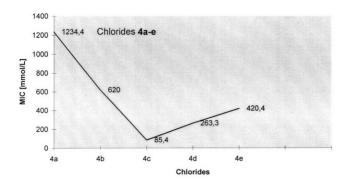
Table III. The MIC^a and MBC^a values of examined chlorides (7-10).

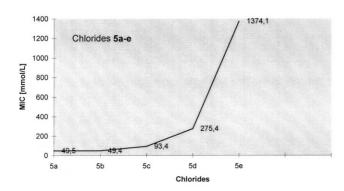
Strains ^b	Chloric	les																				
		7a	7 b	7c	7d	7e	7f	8a	8b	8c	8d	8e	9a	9b	9c	9d	9e	9f	10a	10b	10c	BAC
Cocci																						
M. luteus	MIC MBC	22 22	20 40	9 9	9 9	65 65	61 61	42 82	20 20	18 18	9 34	63 126	20 40	10 19	9 37	9 9	249 249	9 9	9 9	9 9	17 17	1.5 3
S. epidermidis	MIC MBC	22 22	10 79	9 9	9 18	33 33	248 248	42 42	10 10	9 9	34 67	8 8	20 40	19 38	9 18	9 18	8 16	9 18	9 9	9 9	17 17	3
S. aureus	MIC MBC	11 170	20 40	19 19	9 9	16 262	16 16	42 82	10 20	9 36	134 270	126 126	77 154	19 38	9 18	9 9	249 997	9 9	37 72	9 9	17 17	1.5 6
Rods																						
P. aeuruginosa	MIC MBC	344 688	158 319	147 298	138 279		3972 3972		76 308	143 288			1239 1239		143 289	139 1122	1994 1994		143 143	280 561	1088 1088	
P. vulgaris	MIC MBC	85 688	79 319	19 298	69 69	262 262	496 993	662 662	308 154	9 143	270 1083	255 1021	20 619	19 299	9 18	280 280	16 249	9 289	18 143	9 139	17 561	12 12
K. pneumoniae	MIC MBC	344 344	79 158	19 38	138 138	262 529	993 1986	331 331	39 76	18 36	67 1083	63 255	40 154	38 74	18 71	36 139	997 997	18 37	72 72	18 139	67 134	12 24
E. coli	MIC MBC	85 85	40 79	19 19	69 138	529 1051	1986 1986		20 76	36 143	270 1083	255 510	77 154	19 38	18 37	36 70	498 997	9 18	37 37	36 69	134 134	-
S. marescens	MIC MBC	688 1376	319 638	147 596	279 279			1324 1324		143 143			1239 2478		289 289		1994 3988		143 143	561 561	2176 2176	
Fungi																						
C. albicans	MIC MBC	688 1376	319 319	38 38	36 69		1986 1986		152 308	288 576	541 2166	1021 1021		148 299	37 143	36 70	1994 1994	. –	143 289	139 280	272 272	3
T. mentagrophytes	MIC MBC	170 170	40 79	38 74	9 18	262 529	248 248	164 331	39 152	288 288	1083 1083		154 308	38 148	18 71	9 9	489 489	37 72	72 143	69 69	272 282	
Rh. rubra	MIC MBC	344 344	158 158	19 38	9 36		1986 1986		20 39	143 143	270 1083	255 255	154 154	74 74	37 37	18 36	997 1994	72 72	72 72	69 131	272 272	12 12

^a in mmol/L, ^b the number of microorganisms in mL ranged from 10⁴–10⁵.

143.3, 139.0, 127.9, 127.8, 124.4, 120.5, 115.2, 112.5, 86.6, 81.1, 56.4, 44.5, 31.9, 26.1, 20.3, 19.4 (CH₃).

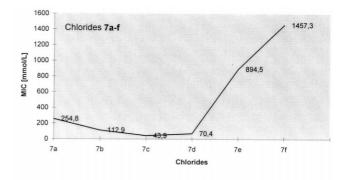

5.2. Antimicrobial activity

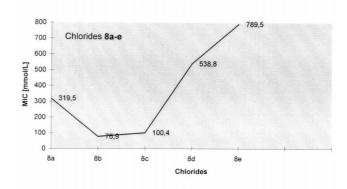

Microorganisms used: eleven standard strains representative of cocci; *Micrococcus luteus* ATCC 9341, *Staphylococcus epidermidis* ATCC 12228, *Staphylococcus aureus* ATCC 6538, rods; *Pseudomonas aeruginosa* ATCC 15442, *Proteus vulgaris* NCTC 4635, *Klebsiella pneumoniae* ATCC 4352, *Escherichia coli* NCTC 8196, *Serratia marcescens* ATCC 8100, yeast-like fungi; *Candida albicans* ATCC 10231, *Rhodotorula rubra* PhB, and dermatophytes *Trichophyton mentagrophytes* var. *gypseum* ATCC 9533.


Standard strains were supplied by National Collection of Type Cultures (NCTC), London and American Type Culture Collection (ATCC). *Rhodotorula rubra* (PHB) strain was taken from the Department of Pharmaceutical

Microbiology, K. Marcinkowski University of Medical Sciences, Poznan.

Antimicrobial activity was determined by the tube dilution method. The method shows, the lowest concentration of a chloride inhibiting cell multiplication (MIC) or killing them (MBC). Two-fold dilutions of the chlorides were prepared in the Mueller-Hinton broth medium (bacteria) or in the Sabouraud broth medium (fungi). A suspension of the standard microorganisms prepared from 24 h cultures of bacteria in the Mueller-Hinton broth medium and from 5 and 10 day cultures in the Sabouraud agar medium for fungi at a concentration of 10⁵ cfu/mL were added to each dilution in a 1:1 ratio. Growth (or its lack) of the microorganisms was determined visually after incubation for 24 h at 37 °C (bacteria) or 5-10 days at 28-30 °C (fungi). The lowest concentration at which there was no visible growth (turbidity) was taken as the MIC.





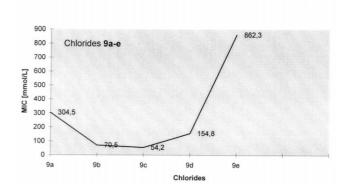


Figure 1. The MIC mean values for (alkoxymethyl)dimethyl-{5-[(4-chlorophenyl)azo]-2-hydroxybenzyl}ammonium chlorides (3–5).

Then from each tube, one loopful was cultured on an agar medium with inactivates [14] (0.3% lecithin, 3% polysorbate 80 and 0.1% cysteine L) and incubated for 48 h at 37 °C (bacteria) or for 5–10 days at 28–30 °C (fungi). The lowest concentration of the chloride supporting no colony formation was defined as the MBC.

Figure 2. The MIC mean values for (alkoxymethyl)dimethyl-{2-hydroxy-5-[(4-methylphenyl)azo]benzyl}ammonium chlorides (7–9).

Acknowledgements

This investigation received financial support from the Polish Committee of Scientific Research, Grant KBN 3 T09B 010 15.

References

- [1] Dunn C.C., Proc. Soc. Exp. Biol. Med. 35 (1936) 427–429.
- [2] Domagk G., Dtsch. Med. Wochenschr. 61 (1935) 829-832.
- [3] Beasley R., Fishwick D., Miles J.F., Hendeles L., Pharmacotherapy 18 (1998) 130–139.
- [4] Tramontini M., Synthesis (1973) 703–775.
- [5] Tramontini M., Angiolini L., Tetrahedron 46 (1990) 1791–1837.
- [6] Tramontini M., Angiolini L., Mannich-Bases, Chemistry and Uses, CRC, Boca Raton USA, 1994.
- [7] Arend M., Westermann B., Risch N., Angew. Chem. Int. Ed. 37 (1998) 1045–1070.
- [8] Dimmock J.R., Erciyas E., Kumar P. et al., Eur. J. Med. Chem. 32 (1997) 583–594.

- [9] Dimmock J.R., Pandeya S.N., Allen T.M., Koa G.Y., Pharmazie 53 (1998) 201–202.
- [10] a. Kimich C., Ber. 8 (1875) 1026–1032; b. Nolting E., Kohn O., Ber. 17 (1884) 351–369; c. Heumann K., Oeconomides L., Ber. 20 (1887) 904–909; d. Krause M., Ber. 32 (1899) 124–127; e. Farmer R., Hantzsch A., Ber. 32 (1899) 3089–3101.
- [11] Tomlinson E., Brown M.R.W., Davis S.S., J. Med. Chem. 20 (1977) 1277–1282.
- [12] Heir E., Sundheim G., Holck A.L., J. Appl. Bacteriol. 79 (1995) 149–156.
- [13] Bedford C.D., Harris R.N., Howd R.A. et al., J. Med. Chem. 32 (1989) 493–516.
- [14] Skrzypczak A., Brycki B., Mirska I., Pernak J., Eur. J. Med. Chem. 32 (1997) 661–668.